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Original Entropy Power Inequality

The Entropy Power Inequality (EPI) of [Shannon ’48, Stam ’59] can be formu-
lated as follows:

EPI: Suppose X1 and X2 are two independent random vectors in Rn with
finite di↵erential entropies. Let Z1 and Z2 be two independent, isotropic
(i.e., with covariance matrix a multiple of identity) Gaussian random vectors
in Rn such that

h(X1) = h(Z1), h(X2) = h(Z2)

Then
h(X1 +X2) � h(Z1 + Z2)

Many motivations

• Implies, for i.i.d. X
i

,

h

✓
X1 +X2p

2

◆
� h(X1)

and hence is a key step to the entropic Central Limit Theorem

• Useful in proving coding theorems in information theory

• Implies the Heisenberg Uncertainty Principle, and the Log Sobolev Inequality for Gaus-
sian measures



A Comment and a Question

Comment: The functional N(X) = e

2h(X)
n is called the “entropy power” of

X . The EPI stated above is equivalent to the usual formulation: If X1, X2

are independent random vectors in Rn,

N(X1 +X2) � N(X1) +N(X2)

with equality i↵ X1 and X2 are normal with proportional covariance matrices

Why? Let Z1 and Z2 be two independent, isotropic Gaussian random
vectors in Rn such that

h(X1) = h(Z1), h(X2) = h(Z2)

Then
N(X1) +N(X2) = N(Z1) +N(Z2) = N(Z1 + Z2)

using the fact that for an isotropic Gaussian Z, N(Z) is (up to an absolute
constant) the variance of each component

Question: Can we refine the EPI, in the sense that we insert a meaningful
quantity in between the two sides?



Reminder: What are Rearrangements?

For a function f : Rn ! [0,1), let A
t

= {x : f (x) � t}. Define

f

⇤
(x) =

Z 1

0
1{x2A

t

⇤}dt

where 1{x2A
t

⇤} = 1 if x 2 A

t

⇤ and 0 otherwise.

Remarks

• Note that f (x) =

R
f(x)
0 dt =

R1
0 1{f(x)�t}dt =

R1
0 1{x2A

t

}dt

• The rearrangement of a set A ⇢ Rn is just the Euclidean ball with the
same volume as A centered at 0, and is denoted A

⇤

• Rearrangements for sets ⇢ Rn:

A

A*

• So the idea of the definition is to build up f

⇤ from the rearranged super-
level sets in the same way that we can build f from its super-level sets



Some Lemmas

Lemma 1: For any function f : Rn ! [0,1), and all t � 0,

{x : f (x) > t}⇤ = {x : f

⇤
(x) > t}

Lemma 2: (Rearrangement preserves densities) For any function f : Rn !
[0,1), and any p � 1,

kfk
p

= kf ⇤k
p

In particular, the rearrangement of a density function is a density function

Lemma 3: (Rearrangement preserves entropy) For any density f ,

h(f ) = h(f

⇤
)

Remarks

• Lemma 1 says that f ⇤ is a spherically symmetric decreasing function (i.e., f ⇤
(x) only

depends on |x| and is non-increasing in it) such that, for any measurable subset B ⇢
[0,1), the volumes of the sets {x : f (x) 2 B} and {x : f

⇤
(x) 2 B} are the same

• Lemma 1 and Lemma 2 are classical; Lemma 3 appears to be a new observation but is
not very di�cult

• Basic idea of proofs: Tonelli’s theorem



An entropy inequality with rearrangements

Theorem: Suppose X1 and X2 are two independent random vectors in Rn

with densities f1 and f2, such that . Then, provided they exist,

h(X1 +X2) � h(X

⇤
1 +X

⇤
2 )

where X⇤
1 and X

⇤
2 are independent with densities f ⇤

1 and f

⇤
2

Remarks

•We will show that h(X⇤
i

) = h(X

i

). Hence, the EPI applied to X

⇤
1 and

X

⇤
2 implies

h(X

⇤
1 +X

⇤
2 ) � h(Z1 + Z2)

so that we can write

h(X1 +X2) � h(X

⇤
1 +X

⇤
2 ) � h(Z1 + Z2)

Hence it can indeed be seen as a kind of strengthening

• However, note that this does not directly give a new proof of the EPI
since we used the EPI to show that it was a strengthening!



Beyond Shannon entropy

Rényi entropy of order p: For p > 1,

h

p

(X) =

p

p� 1

log

1

kfk
p

where kfk
p

=

✓R
Rn

f

p

dx

◆1/p

is the usual Lp-norm on Rn

The definition of h
p

(X) continues to make sense for p 2 (0, 1) even though
kfk

p

is then not a norm.

Special values of p: For p = 0, 1,1, h
p

(X) is defined “by continuity”. In
particular, as p ! 1, h

p

(X) reduces to the Shannon entropy

h(X) = h1(X) = �
Z

Rn

f (x) log f (x)dx

Also
h0(X) = log |Supp(f )|,

where Supp(f ) = is the support of the density f , and

h1(X) = � log kfk1



The General Results

Main Theorem: If X
i

are independent Rn-valued random vectors with
densities f

i

, and X

⇤
i

are independent random vectors with densities f ⇤
i

,

h

p

(X1 +X2 + . . . +X

k

) � h

p

(X

⇤
1 +X

⇤
2 + . . . +X

⇤
k

),

for any p 2 [0,1], provided both sides are well defined

Remarks

• Suppose f

i

, 1  i  k are probability densities. Let �(x) be a convex
function defined on the non-negative real line such that �(0) = 0 and �

is continuous at 0. Then we actually show the even stronger result:
Z

�(f1 ? f2 ? · · ?fk(x))dx 
Z

�(f

⇤
1 ? f

⇤
2 ? · · ?f ⇤

k

(x))dx,

provided that both sides are well defined



Proof ideas

For densities f and g on Rn, we say that f is majorized by g ifZ

{x:kxk<r}
f

⇤
(x)dx 

Z

{x:kxk<r}
g

⇤
(x)dx

for all r > 0. In this case, we write f � g

Fact: Let �(x) be a convex function defined on [0,1) such that �(0) = 0

and � is continuous at 0. If f and g are densities with f � g, thenZ
�(f (x))dx 

Z
�(g(x))dx,

provided that both sides are well defined

Remarks

• For non-negative �, the Fact was proved by [Burchard ’94]

• By taking �(x) = x

p for p > 1, �(x) = �x

p for 0 < p < 1 and
�(x) = x log(x) for p = 1, we recover the Main Theorem

• The fact that f = f1?f2?··?fk � g = f

⇤
1 ?f

⇤
2 ?··?f ⇤

k

can be obtained as a
consequence of the classical Rogers-Brascamp-Lieb-Luttinger inequalities
for rearrangements [Rogers ’57, Brascamp–Lieb–Luttinger ’74]



The Unifying Character of The General Result

Brunn-Minkowski inequality

Let A,B be any Borel sets in Rn. Write A+B =

�
x+y : x 2 A, y 2 B

 

for the Minkowski sum, and |A| for the n-dimensional volume. Then
��
A + B

�� 1n � |A| 1n + |B| 1n [BM ]

Remarks

• BM follows from p = 0 case

• It has long been observed that BM resembles the EPI, and the two can
be given a common proof via Young’s inequality for convolution with a
sharp constant [Lieb ’78, Dembo–Cover–Thomas ’91]

• p = 1 case yields as a corollary an inequality due to Riesz and Sobolev



Implication for Fisher information inequalities

Recall the definition of Fisher information I(f ) for a density f :

I(f ) =

Z

Rn

|rf |2

f

Corollary:
I(f ) � I(f

⇤
).

Remarks

• This turns out to be equivalent to the classical Pólya-Szegő inequality
krfk

p

� krf

⇤k
p

(p 2 [1,1]) for p = 2, and gives a di↵erent proof of
it

• Let g be an isotropic Gaussian density such that h(g) = h(f ). Then

I(f ) � I(g) =

1

N(f )

[Stam ’59]

is the “isoperimetric inequality for entropy”. Just as our Main Theorem
strengthens the EPI, the above strengthens the isoperimetric inequality
for entropy since it inserts I(f ⇤

) in between I(f ) and I(g)
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• A conjecture involving generalized Gaussians

• A new approach to the classical EPI

•Discrete analogues



Towards a Rényi EPI

The Rényi entropy power of order p is N
p

(X) = exp{2hp(X)
n

}

Theorem:[Bobkov–Chistyakov ’13] If X1, . . . , Xk

are independent random
vectors taking values in Rn, then for any p � 1,

N

p

(X1 + . . . +X

k

) � c

p

kX

i=1

N

p

(X

i

),

where c
p

is a constant depending only on p

Remarks

• For p 2 (1,1), [Bobkov–Chistyakov ’13] showed that c
p

=

1
e

p

1
p�1 works

• The p = 1 case is simply the EPI, which is sharp for Gaussians with proportional
covariance matrices

• For p = 1, [Rogozin ’87] showed that c1 =

1
2 is sharp when n = 1, while [Bobkov–

Chistyakov ’12] showed that c1 =

1
2 is sharp when k = 2

• In general, the theorem is not sharp



Generalized Gaussians

For �1 < �  2
n+2, the standard generalized Gaussian of order � has

density

g

�

(x) = A

�

✓
1� �

2

kxk2
◆ 1

�

�n

2�1

+

,

where A
�

is a normalizing constant

Remarks

• g0 is the standard Gaussian density in Rn

• For � < 0, g
�

is proportional to a negative power of (1 + bkxk2) for a
positive constant b, and therefore correspond to heavy-tailed measures
with full support on Rn (Student-t distributions)

• For 0 < �  2
n+2, g� is a concave function supported on a centered

Euclidean ball of finite radius (Student-r distributions)

• Although the first class includes many distributions from what one might
call the “Cauchy family”, it excludes the standard Cauchy distribution.
Indeed, the form of g

�

has been chosen so that, for Z ⇠ g

�

, E[kZk2] = n

for any �



A conjecture involving generalized Gaussians

For p >

n

n + 2

, define
1

�

p

=

1

p� 1

+

n + 2

2

Fact:[Costa–Hero–Vignat ’03, Lutwak–Yang–Zhang ’07] If X is a random vector
taking values in Rn, then for any p >

n

n+2,

E[kXk2]
N

p

(X)

� E[kZ(p)k2]
N

p

(Z

(p)
)

,

where Z(p) ⇠ g

�

p

Conjecture: Let X1, . . . , Xk

be independent random vectors taking values
in Rn, and p >

n

n+2. Suppose Z

i

are independent random vectors, each a
scaled version of Z(p). such that h

p

(X

i

) = h

p

(Z

i

). Then

h

p

(X1 + . . . +X

k

) � h

p

(Z1 + . . . + Z

k

).

Remarks

• The conjecture suggests optimal constants for the Rényi EPI in general

• It is true for the three special cases where sharp constant is known

• Our main result “refines” this conjecture



A New Proof of the EPI: IID case

Can we get a new proof of the Original EPI from our Main Result?

Folklore proof for symmetric densities

By the scaling property for entropy, and by subadditivity,

h(Y1, Y2) = h

✓
Y1 + Y2p

2

,

Y1 � Y2p
2

◆
 h

✓
Y1 + Y2p

2

◆
+ h

✓
Y1 � Y2p

2

◆

But, by independence, h(Y1, Y2) = h(Y1)+h(Y2), and by spherical symmetry
(in fact, we only need central symmetry) and i.i.d. assumption, we have

Y1 + Y2 =

D
Y1 � Y2.

Hence

h

✓
Y1 + Y2p

2

◆
� h(Y1) (1)

Remarks

• The Main Result implies h(Y1+Y2) � h(Y

⇤
1 +Y

⇤
2 ), which combined with

the folklore observation, yields (1) for all i.i.d. Y1, Y2

• There are many proofs of EPI [Stam ’59, Blachman ’65, Lieb ’78, Szarek–

Voiculescu ’00, Verdú–Guo ’06, Rioul ’11]



A New Proof of the EPI: general case

Our goal is to recover, from our Main Theorem, the following formulation
of EPI: for any 0 < � < 1,

h(

p
�X +

p
1� �Y ) � �h(X) + (1� �)h(Y )

where, for notational simplicity, we will only consider n = 1

Three Reductions of the Problem

1. By the Main Theorem, we can assume that X and Y are symmetric,
unimodal random variables

2. By the tensorization trick, it is su�cient to show

h(

p
�X +

p
1� �Y) � �h(X) + (1� �)h(Y) + o(M)

whereX andY consist ofM independent copies ofX and Y respectively

3. Suppose X ⇠ f and Y ⇠ g. Standard approximation arguments allow
us to take f and g to be simple functions, i.e., mixtures of uniform
distributions on symmetric intervals. Then:

• densities of X and Y are simple functions

• densities of X⇤ and Y⇤ are mixtures of uniforms on balls



Concavity Properties of Entropy

If p =

P
r

i=1 cifi is a mixture of densities, then
rX

i=1

c

i

h(f

i

)  h(p) 
rX

i=1

c

i

h(f

i

) + log(r)

Remarks

• The right inequality– a ”reverse concavity” of the entropy functional– is
very easy but seems to be a new observation

• Since a convolution of mixtures is a mixture of convolutions, the above
concavity properties can be used to reduce the EPI involving X and Y
(from previous slide) to just an EPI involving uniforms on balls

• By comparison with Gaussians and a use of Stirling’s formula, we can
show that

h(

p
�Z1 +

p
1� �Z2) � �h(Z1) + (1� �)h(Z2)� C log(M)

where C is a universal constant and Z1,Z2 are uniforms on balls of
possibly di↵erent radii



Summary

•We can refine the EPI using rearrangements. In fact, such an inequality
(the Main Theorem) extends to Rényi entropies of any order p 2 [0,1]

• EPI can be obtained as a consequence of the Main Theorem

• The Main Theorem gives a clean unification of EPI and Brunn-Minkowski
inequality (and also of some other inequalities)

• There is an analogue on the integers, which has connections to additive
combinatorics


